New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

Authors

  • Ahmad Reza Karimi Mazidi Department of Management, Faculty of Economics & Administrative Sciences, Ferdowsi University of Mashhad; Researcher at Boshra Research Institute, Mashhad, Iran
  • Ali Alizadeh Zoeram Department of Management, Faculty of Economics & Administrative Sciences, Ferdowsi University of Mashhad; Researcher at ACECR: Academic Center for Education, Culture and Research-Khorasan Razavi, Mashhad, Iran
Abstract:

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the customer lifetime value. Since the RFM model does not take the customers’ loyalty into consideration, the LRFM model has instead been applied for making amendments. Contrary to most of the past studies in which the statistical clustering techniques were used besides the RFM or LRFM model, the current study has provided the possibility of clustering analysis by importing the LRFM indices into the framework of a fuzzy inference system. The results obtained for a wholesale firm based on the proposed approach indicated that there was a significant difference between clusters in terms of the four indices of LRFM. Therefore, this approach can be well utilized for clustering the customers and for studying their characteristics. The strong point of this approach compared to the older ones is its high flexibility, because in which it is not needed to re-cluster the customers and to reformulate the strategies when the number of customers is increased or decreased. Finally, after analyzing the attributes of each cluster, some suggestions on marketing strategies were made to be compatible with clusters, and totally, to improve the performance of customer relationship management system.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

proposing a new approach for prioritization of organizational agility strategies using ftopsis and fuzzy inference system

in this context and for helping to manufacturing industries in this research an attempt has been made to provide a method to managers of evaluating and ranking of agility strategies by using of a fuzzy inference system which is a branch of artificial intelligence. this research has been performed in three sequential phases. firstly, some variables, as factors of agility drivers, agility capabil...

full text

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

full text

Solving a new mathematical model for cellular manufacturing system: A fuzzy goal programming approach

  A fuzzy goal programming-based approach is used to solve a proposed multi-objective linear programming model and simultaneously handle two important problems in cellular manufacturing systems, viz. cell formation and layout design. Considerations of intra-cell layout, the intra-cell material handling can be calculated exactly. The advantages of the proposed model are considering machining cos...

full text

Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco

Given the increase in the number of e-commerce sites, the number of competitors has become very important. This means that companies have to take appropriate decisions in order to meet the expectations of their customers and satisfy their needs. In this paper, we present a case study of applying LRFM (length, recency, frequency and monetary) model and clustering techniques in the sector of elec...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  351- 378

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023